A métrica AUC, que representa a Área sob a Curva ROC (Receiver Operating Characteristic), é amplamente utilizada para comparar modelos de Machine Learning para classificação, especialmente em contextos onde as classes estão desbalanceadas.
Mês: abril 2024
Dados Linearmente x Não Linearmente Separáveis
A questão da linearidade em dados, especialmente no contexto de algoritmos de classificação, refere-se à capacidade de separar classes de dados usando uma linha reta (em duas dimensões), um plano (em três dimensões) ou um hiperplano (em dimensões mais altas). Essa separação linear é fundamental para entender como diferentes algoritmos de aprendizado de máquina modelam e fazem previsões a partir dos dados.